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Abstract

We deriv eand analyze fast wideband algorithms forlocating airborne targets using a passiv e
acoustic sensor system. The system consists of a distributed array of a small, lightweight acoustic
vector sensors, either located in �xed positions on the battle�eld or carried by individual soldiers.
These sensors measure the acoustic pressure and all three components of particle velocity at a
single point | the use of such sensors, which have numerous advan tages o ver traditional pressure
sensors, has recently become possible with the development of a new air-based particle velocity
sensor now available commercially. We deriv e a bearing-only estimator based on estimation of
the acoustic intensity vector applicable to single vector sensor. The estimator provides a local
estimate of target bearing without the need for in ter-sensor communication, which is useful
if the sensor is carried by a battle�eld unit, for example.. We then develop a 3-D location
estimator by combining the local bearing estimates at a central processor. We also calculate an
optimal performance measure for the local bearing based on the Cram�er-Rao bound and use it
to assess the full potential of our distributed array concept and the e�ciency of our algorithms.
Numerical simulations are used to show the e�ectiveness of our solutions.
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1 Introduction

Acoustic emissions from battle�eld sources can provide an invaluable signature by which to detect,
locate, and trac khostile tanks, trucks, helicopters, and sniper positions that are camou
aged or
have low radar cross sections. In addition, the passivity of an acoustic surveillance system allows
it to monitor the battle�eld without giving aw ayits own presence. A number of researchers ha ve
considered the use of arra ysof pressure sensors (ordinary microphones) to perform this function
[1]{[5] and have demonstrated the feasibility of battle�eld acoustic localization and tracking.

We propose to consider the use of ac ousticvector sensors (AVS's), both individually and elements
of an array, to perform the above battle�eld surveillance functions. These sensors measure the
(scalar) acoustic pressure and all 3 components of the acoustic particle velocit yvector at a giv en
point. They have been shown to possess a number of advantages over arrays ofstandard pressure
sensors that would make them especially valuable on the battle�eld, in both unattended and mobile
system contexts. These advantages arise because AVS's extract source information present in the
structure of the velocit y �eld that an array of standard pressure sensors cannot. F or example, the
direction of the particle velocit yvector in a planewaveor spherical w avecoincides with the line
from sensor to source. This extra information, above and beyond a simple increase of signal-to-
noise ratio (SNR), is what gives AVS's and AVS arrays their particular advan tages over traditional
pressure-only systems.

The use of these sensors was �rst considered from an analytical point of view in [6], [7] for the
localization of far-�eld sources and further studied in [8] and [9]. A number of estimation algorithms
have also been derived [10] and [11]. F rom a practical perspective vector sensors have already been
constructed [12] and tested [14], [12]{[16]. Inherent to the current problem is the presence of a
re
ecting boundary | the ground | near the sensors. The use of vector sensors near a boundary
has been analyzed in [17]{[19], and they ha vebeen tested on a mock vessel hull [20] and at the
seabed [21].

Until now vector-sensor research has been directed to underwater situations. How ev er,recently a
new aero-acoustic probe called the Micro
own, has become commercially available, fromMicro
own
Technologies, B.V. [22] in the Netherlands. This probe is a micro-machined sensor that measures
the di�erential resistance betw eentw oheated cantilevers in an air
ow and its output is directly
proportional to acoustic pressure [23], [24]. These sensors are currently availableindividually or
packaged with a pressure microphone to form a single axis intensity probe. We propose combining
three orthogonally oriented Micro
owns with a pressure sensor in a single package to create an
aero-acoustic vector sensor. As the probe is micro-machined the resultant package would be a very
lightw eight sensor an amenable to being carried by an individual soldier.

In this paper we develop decentralized processing algorithms for locating airborne acoustic sources
using a single vector sensor and using a distributed arra yoverarbitrarily placed vector sensors
located on the surface of the ground. The algorithms are applicable to either a �xed array of
unattended or a dynamic array of mobile sensors carried by individual soldiers or other battle�eld
units.

A decentralized algorithm is one in which some processing is carried out locally in subarrays before
being combined centrally . In our algorithm the subarrays consist of individual vector sensors that
independently estimate the local bearing from their location to the target. The bearingestimate



is derived from estimates of the three components of the local intensity vector. An estimate is also
made of its v ariability. While this information is of use to the soldier carrying the unit in its own
right it can also be transmitted to a central processor along with its variability estimate. We then
propose to use a weighted least-squares (WLS) techniques to combine the various bearing estimates
into a single 3-D estimate of the target's location. As a variation w ealso propose a re-weighted
LS method, to account for the di�erent ranges of the sensors from the target. We analyze the
local bearing estimator b y deriving an optimal bound on its mean-square angular error (MSAE)
for comparison.

Any decentralized processor is suboptimal since it does not make use of the correlations betw een
sensors at di�erent locations, it has a number of practical advantages. Firstly each sensor is small
enough to be carried by an individual soldier which makes it a very 
exible system. There are no
restrictions on the placement of sensors they may be arbitrarily far apart, and need not possess any
particular geometrical structure. This is an essential characteristic as the geometrical demands of an
array processing regime cannot be a deciding factor in a unit's placement in a hostile environment.
F urthermore, each sensor is able to provide a bearing estimate of the source to the unit carrying it
without the need to communicate with others sensor or the central processor so not exposing itself
to detection. Even when communication is made to the central processor, minimal data need to
be sent, merely the bearing estimate, an estimate of its accuracy, and the sensor's current location.
This compares very favorablywith a fully optimal design which would require every sensor to
transmit every sample of every component, thereby greatly increasing the risk of detection as well
as computational overhead. Lastly, the algorithms for local bearing estimation and global position
estimation are both inherently wideband algorithms and also very computationally e�cient as they
require no numerical optimization. Thus estimates can be obtained very rapidly, which is almost a
de-facto requirement of localizing airborne targets, with minimal hardware costs.

In theory w ecould replace each vector sensor with a small arra yof distributed pressure sensors
and use the same decentralized processing methodology, in fact decentralized algorithms for sub-
arrays of omni-directional sensors have been proposed and analyzed for far-�eld [25] and near-�eld
[26]. How ev er,this would require greater computational costs because a numerical optimization
procedure w ouldbe required at eac h array. In addition, the minimum frequency of in terest in
airborne applications is 50Hz (see discussion in Section 5) and so eac hindividual array w ouldbe
incredibly cumbersome to transport if it were to be large enough to attain any reasonable degree of
accuracy. Therefore the use of vector sensors is essential to the development of the 
exible system
w ere propose.

In Section 2 w epresent the mathematical model for the sensor measurements, Section 3 develops
an algorithm to rapidly estimate bearing using a single vector sensors. In Section 4 w edevelop
weighted and re-weighted least-squares algorithms for determining 3-D aircraft position given the
bearing estimates from each sensor, construct an estimator to determine the weights, and giv e
an expression for a lower bound on the bearing estimator from eac hsensor. Section 5 provides
n umerical examples and Section 6 concludes. Extensions are presented in Section 7.

2 Measurement Model

We assume that there is a single airborne acoustic source radiating spherical waves whose signal is
received my m vector sensors at arbitrary distinct locations on a 
at ground surface.



If the source is not too close to the boundary, the �eld due to a point source can be obtained
b y creating a point image source, obtained b y re
ecting the source in the boundary and with
amplitude and phase determined b y the boundary characteristics, then summing the �elds from
the tw osources as if the boundary w erenot present. Note that if the source is v ery close to the
boundary, ground waves and surface waves may exit [34]. The resultant �eld may still be obtained
using an image source for locally reacting surfaces but no wthe image source must be somewhat
modi�ed [29]. How ever, w e shall not consider that case in the present paper.

Assume, therefore, that the point source is far enough aw ay from ground that the resulting �eld can
be regarded as arising from point source radiating spherically symmetric w aves and simple point
image, therefore ground w aves and surfaces w avesdo not exist. This is the case for an airborne
source. The pressure and radial velocity my be described in terms of the velocity potential, which
for a spherically symmetric waveis

�(r; t) = F (t� r=c)=r ; (2.1)

where r is the distance from the source, c is the sound speed, and F (�) is an arbitrary di�erentiable
function. The pressure and radial velocit y are then [30]

p(r; t) =
@�(r; t)

@t
(2.2)

vr(r; t) = �
1

�0

@�(r; t)

@r
; (2.3)

respectively . Therefore

p(r; t) =
f 0(t� r=c)

r
(2.4)

vr(r; t) =
p(r; t)

�0c
+
F (t� r=c)

�0r2
; (2.5)

where f 0(�) is the derivativ eof F (�). Since the second term in (2.5) decreases as 1=r2 while the
�rst goes down as 1=r, it is negligible at distances of more than a few wavelengths.The minimum
frequency of interest in aircraft location is about 50Hz corresponding to about 6:6m (see discussion
in Section 5), so we shall ignore it.

Suppose w eha vean airborne source located at a distance r and (unit length) bearing vector u
from a sensor located on the ground, which de�nes the x; y-plane; the z � axis is taken to point
upward. Construct an image source by re
ecting the source in the x; y-plane that also radiates the
spherical wave but with di�erent amplitude and phase, i.e. if �(r; t) represents the phasor notation
(also known as the complex envelope or analytic signal) of the source �eld's velocity potential, the
image source has velocity potential R�(r; t), where R is complex. Therefore the complex envelopes
of the pressure and velocit y �elds at the sensor are

p(t) = ~p(t)(1 +R) (2.6)

v(t) = �
1

�0c
(u+Ruimage)~p(t); (2.7)

where ~p(t) is the complex envelope off 0(t� r=c)=r, u is the unit vector pointing from the sensor to
the (real) source, and uimage is obtained from u b y negating thez-component. The presence of the



boundary imposes the condition �p(t)=vz(t) = Zin at z = 0 [30], where vz(t) is the z-component of
v(t), and Zin is the speci�c acoustic impedance of the surface. Therefore

Zin = �
(1 +R)�0c

sin (1 �R)
; (2.8)

where  is the elevation of the source with respect to the sensor. Therefore

R =
Zin � �0c= sin 

Zin + �0c= sin 
: (2.9)

The quantity R is known as the re
ection coe�cient. In general Zin is a function, possibly quite
complex, of  , or equivalently the incidence angle 
 = pi=2 �  , and frequency. How ever, [34]
concluded that various ground surfaces behave as if they are locally reacting. A locally reacting
surface is one for which Zin is independent of the incidence angle (but not necessarily frequency) and
often also arises in arc hitectural acoustics with porous sound-absorbing materials [30]. A locally
reacting surface may be characterized as one in which the sound disturbance transmitted into the
low er medium does not travel along its boundary (actually this is only strictly true for plane waves
since, as mention above, ground waves and surface w aves may exist when the source is v ery close
to the boundary) and therefore the normal velocity at each point is completely determined by the
pressure at this point [31].

It follo ws from the above development that the measurement of a single vector sensor at bearing u
from the source may be written as a complex four-element vector

y(t)
4
=

�
yp(t)
yv(t)

�
= h~p(t) + e(t) t = 1; 2; : : : ; (2.10)

where yp(t) is the pressure measurement yv(t) contains the three orthogonal velocity measurements,
e(t) represents noise, and h, the steering vector is given by

h =

2
664

1 +R
(1 +R) cos� cos 
(1 +R) sin� cos 

(1�R) sin 

3
775 ; (2.11)

where � is the source's azimuth relative to the sensor. The expression (2.11) for h assumes that
the three velocit ycomponents are aligned withthe three coordinate axes, or that the orientation
of the sensor is known and that the data ha vebeen rotated to achieve the same e�ect. It should
not be di�cult to design a sensor package for which it is easy toalign the v ertical component. T o
correctly align the horizontal components a compass would probably have be included in the sensor
package, either one that could be aligned b y ey e or, for sensors air-dropped onto a battle �eld,
a digital compass whose output used to rotate the data. Such an idea is used in the underwater
vector sensors described in [14]. The measurements are again complex envelopes. Note that the
complex envelope of a bandpass signalx(t) is given by xi(t) + ixq(t), where xi(t) and xq(t) are the
in-phase and quadrature component of x(t) respectively (see e.g. [32]).

We assume that the signal and noise processes ~p(t) and e(t) are zero-mean uncorrelated processes
with �nite second order moments and that

Ef~p(t)~p(�)
�g = �2s�t;� (2.12)

Efe(t)e(�)Hg = �2I�t;� ; (2.13)



where �t;� is the Kronecker delta function, I is the identity matrix, the superscript � represents
conjugation and superscript H complex conjugation and transposition. In fact the assumption of
independent time samples is not strictly necessary for the following algorithms to be implemented.
If there is time correlation, ho w ev er,more samples will be required to achieve a given lev el of
accuracy.

T ocalculate the performance measure for the bearing-only estimator and to implement the sim-
ulations w ewill make the further assumption that both processes are Gaussian. If, for example,
the signal and noise processes are band-limited Gaussian stochastic processes, with power spectral
densities that are symmetrical about the center frequency, then the complex envelopes will satisfy
the above assumptions if they are sampled at the Nyquist rate, i.e. twice the bandwidth.

Now suppose there are m sensors located at r1; : : : rm, and denote the 3-D source location vector
b y�. Letting ~p(t) be the pressure signal at the origin, the total measurements from the array are
then

yi(t) = h(ui)
k�k

k� � rik
~p(t� �i) + ei(t) i = 1; : : : ;m; t = 1; 2; : : : (2.14)

where the ui are the sensor to source bearing vectors and �i = (k�� rk � k�k)=c is the di�erential
time delay with respect to the origin. In addition to the above statistical assumptions (2.13) w e
also assume that the noise processes are uncorrelated from one location to another for the purposes
of simulation, but this is not required for the algorithms to work. The noise pow ersat di�erent
sensor locations may also vary .Note that w edo not account for relative Doppler e�ects in this
model or in our simulations, how ev er, our estimation schemes do not use this information and will
w ork just as well whether it is present or not.

In the follo wingsection w ederive an algorithm to estimate each of the ui locally at each vector
sensor and in Section 4 we develop a method tocom bine these estimates to estimate �.

3 Local Bearing Estimation

In this section w ederive a fast wideband algorithm to estimate the bearing of the source u from
a single v ector sensor. In the mobile array paradigm, where each sensor is carried by a battle�eld
unit, such as a soldier, this estimate provides vital information the the unit without the need for any
communication, thereby not exposing the unit to detection. Acoustic intensity is a vector quantity
de�ned as the product of pressure and velocity. Since the x and y components of the in tensit y
vector are the same for both real and image sources the acoustic intensity vector is parallel to the
projection of the source's bearing vector u onto the x; y-plane. Therefore w ecan use an estimate
of the horizontal acoustic in tensit yto determine the azimuth. Note that [7] used this tec hnique
to derive an estimator for the full bearing vector using a vector sensor in free space, ho wever, it
cannot be used to �nd the elevation when the boundary is present.

The horizontal component of acoustic intensit y measured by a single vector sensor located a distance
d from a re
ecting boundary is

Ih(t) = yp(t)

�
�yvx(t)
�yvy(t);

�
; (3.15)



where the overbar indicates complex conjugation. Thus, for a narrowband or wideband source, as
long as the noise at the various sensors is mutually uncorrelated,

EfIh(t)g = �2s j1 +Rj2 cos 

�
cos�
sin�

�
(3.16)

Since this is purely real w elet ŝ = N�1
PN

t=1RefIh(t)g, and b y the strong law of large n umbers
ŝ! EfIh(t)g. Thus we can estimate azimuth from

ûh

4
=

�
cos �̂

sin �̂

�
=

ŝ

kŝk
! uh

4
=

�
cos�
sin�

�
(3.17)

Note that equation (3.17) is independent of R, and so w e can use this estimatorto determine the
azimuth ev enwithout knowing the local re
ective properties of the ground. Since the magnitude
of the horizontal component of acoustic intensity strongly depends on the elevation so will the
accuracy of this azimuthal estimator. T o be precise, by adapting the analysis of [7] tothe presen t
scenario, we can show that its asymptotic MSAE is

MSAE(ûh)
4
= lim
N!1

N E(�̂� �)2 =
1 + j1 +Rj2�

2�2j1 +Rj4 cos2  
: (3.18)

T oobtain an estimator of the elevation is somewhat more complicated. First suppose that the
input impedance Zin is approximately constant across the bandwidth (this is the only factor that
constrains the bandwidth of our algorithm in an yw ay) and note that the vertical component of

acoustic intensit yIv(t)
4
= yp(t)�yvz(t) has expected value

EfIv(t)g = �2s(1 +R)(1� �R) sin (3.19)

Using equation (3.16) we note that

�
4
=

EfIv(t)g

kEfIh(t)gk
=

1� �R

1 + �R
tan =

�c
�Zin cos 

; (3.20)

where the second equality follo ws from (2.9). The quantity on the righ t-handside, � say, is a
function of  alone, which we propose to estimate from the statistic

�̂ =

PN
t=1 Iv(t)

k
PN

t=1RefIh(t)gk
: (3.21)

It then remains to solve

�̂ =
1� �R( ̂)

1 + �R( ̂)
tan  ̂ =

�c

�Zin cos  ̂
; (3.22)

for  ̂. Thus we propose the estimate the elevation from

 ̂ = Re

�
cos�1

���� �c�̂ �Zin

����
�
: (3.23)

We choose to take absolute values before the in versecosine, rather than taking real values or
applying the inverse cosine to a complex number, because n umerical simulations sho w edthat it



resulted in slightly greater accuracy, particularly for large N . The real value of the in verse cosine
is tak en to deal with (rare) cases in which the argument is larger than one, in these cases we ensure
that  ̂ = 0. Note that the expression in (3.23) automatically ensures that the estimated elevation
is not negative so incorporating the a-priori knowledge than the source lies above ground.

It can be seen from the above that the bearing is estimated via the three components of in ten-
sity. Therefore, w ecould in theory use three orthogonally oriented single-axis in tensit yprobes,
Micro
own Technologies B.V. already packages its novel sensor with a pressure sensor to form such
an intensit y probe.In tensity probes are available from other manufacturers such as Br�uel and Kj�r,
although those currently a vailable use tw oclosely spaced pressure sensors, instead of true velocity
sensors, to determine the velocit y.Such sensors are not considered appropriate for vector-sensor
processing [7].

4 Centralized Location Estimation

We now consider the problem of how to combine the decentralized estimates of the target bearings
to obtain an 3-Destimate of its location. Each sensor transmits its local estimate of the direction
from its location to the source ûi say as well as its own location ri. The location could be determined
from a lightw eight GPS receiver carried along with the sensor. In practice both the localbearing
and position will contain errors, how ever, we shall assume that the bearing estimate is the dominant
source of error and ignore possible inaccuracies in the location ri. Therefore, a total of �ve quantities
(four if all sensors are at the same altitude) need be transmitted, three to describe the location and
tw o for the bearing, no matterho w long an observation window is used. This is a huge advantage
over a centralized processing scheme in terms of communications overhead where every single data
sample from every single sensor must be sent to a central processor.

4.1 Weighted Least Squares

If all the ûi w erewithout error the collection of m lines passing through each ri with direction
ûi w ouldintersect at the true source position. Therefore, w ewant to choose the estimate of the
source's location �̂ to be a point that is in somesense closest to all these lines. We shall choose �̂
so as to minimize a weighted sum of the minimum squared distances from �̂ to each line. By doing
so we will derive a closed form solution for the location estimate so avoiding the need for a complex
computational searc h. Any point along the line de�ned b y the ith sensor's location and bearing
estimate is de�ned by the vector ri + �iûi for some �i. For �xed � the point of closest approach
occurs when �i = ûT

i (�� ri), i.e. �i is the projection of the vector from ri to � onto the direction
ûi. Thus the weighted least squares (WLS) estimate of �̂ is

�̂ = argmin
�

mX
i=1

kri + ûT

i (� � ri)ûi � �k2wi; (4.24)

where wi is a weight corresponding to the accuracy of each ûi: the betterthe accuracy of ûi, the
smaller wi should be. We shall discuss the choice of weights fully in Section 4.2. Expanding (4.24)
and rearranging we obtain

�̂ = argmin
�

mX
i=1

f�2rTi (I � ûiû
T

i )� + �T (I � ûiû
T

i )�gwi; (4.25)



where we have dropped terms independent of �. Note that (I� ûiû
T

i ) is the projection matrix onto
the plane orthogonal to ûi. Di�erentiating with respect to � and setting the result equal to zero
gives

2

mX
i=1

(I � ûiû
T

i )(ri � �̂)wi = 0: (4.26)

Hence,

�̂ =

" 
mX
i=1

wi

!
I � ÛWÛT

#�1
Aw; (4.27)

where w = [w1; : : : ; wm]
T , W = diagfwg, Û = [û1; : : : ; ûm], and

A = [(I � û1û
T

1 )r1; : : : ; (I � ûmû
T

m)rm] : (4.28)

4.2 Choice of Weights

In general the accuracy of the bearing estimates ûi will be di�erent from sensor to sensor due to a
number of factors. There may belocal v ariations in background noise level or ground re
ectivity,
signal strength will di�er between sensors that are di�erent distances from the source because of
spherical spreading loss, and the accuracy of the estimation algorithm may depend on the true
ui, which di�ers between sensors. Thus, it is important for each sensor to transmit a measure of
accuracy only with its bearing estimate to the central processor. A very natural measure in this
situation is the mean-squared angular error (MSAE) de�ned as E �2i where �i is the angle betw een
ui and its estimate. The analysis of our estimator is somewhat complex and no simple expression
is known for the MSAE. Although for ground targets, when only azimuth need be estimated, a
closed form expression for the MSAE may be found.

Instead of the MSAE itself, we shall use a bound on the MSAE derived in [7], and given by

MSAEb(u) = Nfcos2  CRB(�) + CRB( )g; (4.29)

where � and  are the azimuth and elevation of the source, relative to the sensor, CRB(�) indicates
the Cram�er-Rao bound, and N is the n umber of snapshots. It has been shown that this bound
holds for all N for unbiased estimators of a unit length vector u and asymptotically for a muc h
larger class of estimators [27]. In Appendix A we show that the MSAEb is given by

MSAEb =
1

2�

�
1 +

1

�khk2

��
cos2  

k@h=@�k2
+

1

k@h=@ k2 � j(@hH=@ )hj2=khk2

�
: (4.30)

The various expression for khk2, k@h=@ k2 are also given in Appendix A, from which it w aybe
seen that MSAEb is a function of the SNR � and the elevation  , but not the azimuth.

Since MSAEb depends on the unknown quantities � and  w emust actually use an estimate of
MSAEb b y plugging in estimates of the unknowns. The bearing estimator itself already provides
us with and estimate of  so its remains to estimate �. If we knew the maximum-likelihood (ML)
estimate of u, say ûML, then w ecould use closed form expressions, see e.g. [28], to �nd the ML



estimates of �̂2 and �̂2s . Since we don't know ûML, we shall use our actual estimate of û. Therefore
we have

�̂2 =
1

3
Re

(
tr

" 
I �

ĥĥ
H

kĥk2

!
R̂

#)
(4.31)

�̂2s =
1

kĥk4
ĥ
H

[R̂� �̂2I]ĥ; (4.32)

where ĥ = h(û) and R̂ is the sample covariance matrix. So our estimate of the SNR is �̂ = �̂2s=�̂
2.

Finally, we plug �̂ and the elevation estimate  ̂ in to(4.30) to obtain \MSAEb and the weight that

w e will use in determining�̂ is 1=\MSAEb.

4.3 Reweighting

If a sensor is a long w ayfrom the source, a small error in its bearing estimate will have a muc h
more dramatic e�ect upon the resulting estimate of � than if the the sensor is v ery close to the
source. Thus, we should also w eight terms of the squared error criterion more heavily for sensors
that are close to the than those far aw ay.T o be precise the contribution of the ith bearing estimate
to the squared error criterion is approximately l2i �

2
i , where li is the distance of the source from the

ith sensor and �i is the angular error of ûi. If w eknew the li a-priori w ewould ideally lik e to
weight each term by wi = 1=(l2i �MSAE(ui)).

Although we do not know the li, we do have an estimate of them after w eha veobtained the �rst
estimate of � using the angular error weights alone, therefore w epropose a reweighted estimator
constructed as follows: Find � from the above WLS scheme using the angular error weights alone.

wi = 1= \MSAEb(ui). Using �̂, estimate the distances from eac h sensor to the source as l̂i =
k�̂ � rik, then construct a reweighted estimate �̂R using the above WLS scheme but no wwith

wi = 1=(l̂2i �
\MSAEb(ui)).

5 Numerical Examples

We now illustrate by numerical example the performance of the local bearing estimator and global
location estimators derived in the previous section. We also suppose that the ground has normalized
input impedance Zin=(�0c) = 11 + 13i, and that it is approximately constant over this frequency
band. This corresponds to the value measured in [34] for grass-covered 
at ground at 225Hz, the
mid-point of the band.

5.1 Local Bearing Estimation

Figure 1 illustrates the performance of the local bearing estimation algorithm via the standard de-
viation of its squared angular error, i.e.

p
MSAE(u) and compares it with the bound

p
MSAEb(u).

The scenario consists of a 20dB source and 350 snapshots, and 500 realizations were used for each
incidence angle. Because of the azimuthal in varianceof the steering vector h of a single vector
sensor located on the ground, all quantities are function of elevation alone.
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Figure 1: P erformance, in terms of
p
MSAE, of local bearing estimation algorithm (solid), and bound

MSAEb (dashed), versus incidence angle, for a 20dB source with 350 snapshots. Also shown are the averaged

estimated MSAEb (dash-dotted) plus three of its empirical standard deviations (dotted). The results were

obtained using 500 realizations at each incidence angle.

It can be see that, at normal incidence, our algorithms perfromance reac hesthe MSAEb but falls
o� at greater incidence angles, underperforming it by about 8� standard deviation by 80� incidence.
This incrseaing lac k of optimality aw ayfrom normal incidence should not have too dramatic an
e�ect in practice, how ev er,as it seems unlikely that the incidence angle would ever be more than
about 45�, even for a low 
ying aircraft and a very widely spaced array. It can be seen from (2:11)
and (2:9), that jhj ! 0 as the incidence angle tends towards grazing, leading to very low signal
levels on all component sensors at large incidence. This is why all curves tend to in�ntity as w e
appraoch grazing.

Not shown in Figure 1 is the standard deviation of the elevation estimate as it essentially follows the
curve of the MSAE. Therefore, we conclude that almost all the angular error is due to the error in
estimating the elevation and that the error in the azimuthal estimates is negligible in comparison. T o
understand this consider Figure 2. It shows the signal gain resulting from re
ection at the boundary
and the incoming signal's direction for each sensor component, i.e. the squared magnitudes of the
en tries ofh. The pressure sensor gain is seen tobe unformly larger, because it is omni-directional
and is almost 
at until shrply tapering o� tow ardsgrazing incidence. The in-plane componenet
gain (actually it is the gain of the sum of the in-plane components, or equivalently, the gain of one
component when u is in the same plane as it axis; this is the quantity of interest because the out put
of both sensors together determine the azimuth) is seen to increase aw ayfrom normal, then reach
the pressure gain at around 80� before tapering o�. It crosses the normal component gain at about
5�. On-the other hand, the normal gain, which determines the ability to estimate elevation, starts
o� at about �18dB and stays about 24dB below the pressure gain for all angles. The fact that the
normal component gain is much low er than both pressure and in-plane gain for most angles explains
why the estimate of elevation contributes most of the MSAE. In addition, when the normal gain is
larger than the in-plane, v ery near normal incidence, large errors in the azimuthal estimate ha ve
little e�ect on the MSAE because of the inherent singularity in the spherical coordinate system.
This poor normal gain is mainly due to the size of the input impedance, if the input impedance
w esmall, i.e. the surface were acoustically more pliable, the normal gain would improve relative
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Figure 2: Signal gain resulting from re
ection and sensor directionality for pressure (solid), in-plane

(dashed), and normal (dash-dotted) components of a vector sensor at a locally reacting boundary. The

normalized input impedance is Zin = 11 + 13i.

to the in-plane and pressure gains resulting in better estimation of elevation, but poorer azimuthal
estimation.

Also shown in Figure 1 the average estimated bound \MSAEb, which will be used as the weight
in the global location estimator, plus 3 standard deviations. The estimate of the \MSAEb, is seen
to be very accurate until about 60� and then begins to deviate slightly from thetrue MSAE b and
starts to become more variable. It is possible that on any run  ̂ = 0, with �nite probablility if the
argument of the inverse cosine in (3.23) is greater than one. In this case our technique fails to yield
an estimate of MSAEb, beacuse it is theoretically in�nite if  really is zero as jhj = 0, so no signal
is present on an yof the sensors. In our simulation, this never occurred below 66� incidence, and
the chances of it occuring rose to about 50% within a few degrees of grazing incidence. However,
as discussed above, w edo not expect that suc hlarge incidences will need to be measured in this
application and so this should not be a problem in practice. If it does occur at one sensor in the
array, a solution would be to use the average of the\MSAEb obtained from the other sensors as the
weight the failed sensor.

5.2 Global Location Estimation

We no w give an example of the performance of the global location estimator for a wideband signal.
Assume that signal arriving at each sensor is a wideband stationary Gaussian signal and that
it is bandpass �ltered to have spectral support from 50-400Hz. Aircraft noise above this band
considerably a�ected b y propagation absorption, while below it, ambient noise (predominantly
caused b y wind 
o wingover the sensors) dominates [4]. The signal is then do wnsampledwith a
cen terfrequency 225Hz and the resulting complex envelope sampled at the Nyquist frequency, i.e.
twice the bandwidth 700Hz. We assume that the signal and noise power spectra are symmetrical
about the center frequency so that the resulting signal and noise samples are i.i.d. complex Gaussian
with variance equal to the signal and noise pow ers respectively.
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Figure 3: Angular estimation performance in terms of
p
MSAE for the WLS and re-weighted LS global

location estimators. The scenario is described in the text.
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location estimators. The scenario is described in the text.



The source is located at (4; 5; 100:68), and there are six sensors located on the ground with x; y
coordinates (0; 0), (40; 40:52), (20; 18), (40;�30:53), (�40;�40:18), and (�99:19; 0), all expressed
in meters. These locations were carefully chosen, assuming a speed of sound of 330m=s, to ensure
that the di�erential delays betw eenthe origin and each sensor are all multiples of the sampling
period 1=700s, thereby avoiding the need to implement fractional delays while generating data for
the simulation. The noise pow er is assumed to be the same at each sensor.

Figures 3 and 4 show the MSAE and mean-square range error (MSRE), de�ned by E(k�̂k�k�k)2, of
the location estimated for both the basic WLS estimator and the reweighted estimator, versus the
SNR at the origin. A total of 350 snapshots were used, corresponding to a half second observation
window during which time the source was supposed to have been approximately stationary. At
each SNR 500 realizations w erecomputed. Unsurprisingly, both MSAE and MSRE decrease as
SNR increases, however, the estimated bearing is rather more accurate than the estimated range.
The standard deviation of the angular error is only 3:5� even at 0dB and falls below 1� b y about
13dB, whereas the standard deviation of the range error is about 23m (about 30% if its distance
from the origin) at 0dB. It too however is less than 5m by 15dB and is fractions of a meter at large
SNR. It is intuitive that a small error in the local bearings will cause a larger error in the estimated
range than in the estimated bearing especiallyis the source the very far from the sensors. Hence
the somewhat smaller angular errors, relative to range errors, seen in the simulation. Indeed, it is
known that the CRB on range for a passive sensor array is known to increase as the fourth pow er
of the range [35].

The reweighted estimator is seen to provide a slight decrease in both the angular and range error,
the improvement is sligh tly greaterfor the angle, at all SNR's. Given its low computation cost it
is probably worth doing, even though the gain is not large.

6 Conclusion

We developed a fast, wideband decentralized processing scheme for 3-D source localization of air-
borne targets using a distributed array of aeroacoustic vector sensors. The procedure can be applied
to a 
exible array, in which each soldier or battle�eld unit carries a lightweight sensor package, or
to a static array of unattended sensors, deployed in an air-drop over hostile territory perhaps. The
algorithm requires minimal communication betw een each sensor and the base so reducing the likeli-
hood of detection in a hostile environment. The algorithm proceeds in tw o stages, �rstly each sensor
locally estimates the bearing to the source, using the b y calculating in tensities. These estimates
are then combined using a WLS procedure at a central processor to determine to 3-D location.
We sho wed that performance could be slightly improved b y using a reweighted procedure at this
second stage. We also calculated a bound on the MSAE of the bearing estimate for each vector
sensor and sho wed that for the most important angles near normal incidence our algorithm w as
not too far from optimal.

7 Extensions

There are a number of direction in which we will develop the work presented in this paper, including
calculation of the CRB for the full array to pro videa benchmark for comparison of the global



position estimator and deriving alternative decentralized estimators based on beamforming. Two
di�erent schemes can be considered, one in which beamforming is done at each sensor to estimate
the local bearings and another in which the central processor is told the covariance matrix of each
sensor location, but does not know the cross covariances betw een locations, and maximizes the sum
of the individual spectra. The former requires more computational pow erto be packed in to eac h
package but eac h local estimate should be a little more accurate than the current scheme. The
latter requires minimal computing power at each location, but requires transmission of more data,
namely the whole 4 � 4 co variancematrix instead of the bearing. We will also extend our model
to account for di�erential Doppler shifts and develop tracking algorithms. Finally, we will extend
our model to include ground and surface w avethat occur when the source is close to the ground,
in or to make it applicable to ground targets.

Appendix A

In this appendix we derive the MSAEb for a single vector sensor located on the ground. The MSAEb

de�ned by (4.29) is a function of the CRB on azimuth and elevation. Our measurement model for
a single sensor is a member of the class of models whose CRB on the direction parameters is given
b y Theorem 3.1 of [7]. Note that this theorem only requires in versionof a 2 � 2 matrix (when
applied to our case) even though there are four unknowns as it uses a tec hnique of concentrating
the CRB with respect to nuisance parameters developed in [33]. F or the current model we obtain

CRB(�;  ) =
1

2N�
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1

�khk2
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where D = [@h=@�; @h=@ ].

Now, from the de�nition of the vector-sensor steering vector h (see (2.11)), noting that the re
ection
coe�cient R is a function of  but not �, we have that
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where R0 is the derivative of R with respect to  . Now (@hH=@�)h = (@hH=@�)(@h@ ) = 0 follows
from (A.2) and (A.3), therefore
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and the result (4.30) follows. F rom (2.11), (A.2), and (A.3) we also obtain the following expressions
for the terms involv ed in MSAEb

khk2 = j1 +Rj2(1 + cos2  ) + j1�Rj2 sin2  (A.5)
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where �R0 indicates the complex conjugate of a R0.
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